# **Email Security**

DR. MOHAMMED ABDULRIDHA HUSSAIN

# **Pretty Good Privacy (PGP)**

- Largely the effort of a single person, Phil Zimmermann, PGP provides a confidentiality and authentication service that can be used for electronic mail and file storage applications.
- **PGP** is now on an Internet standards track (RFC 3156; *MIME Security with OpenPGP*).
- Algorithms includes RSA, DSS, and Diffie-Hellman for public-key encryption;CAST-128, IDEA, and 3DES for symmetric encryption; and SHA-1 for hash coding.

#### Operational Description

The actual operation of PGP, as opposed to the management of keys, consists of four services: authentication, confidentiality, compression, and e-mail compatibility

### **Notation**

- $K_s$  = session key used in symmetric encryption scheme
- $PR_a$  = private key of user A, used in public-key encryption scheme
- $PU_a$  = public key of user A, used in public-key encryption scheme
- EP = public-key encryption
- DP = public-key decryption
- EC = symmetric encryption
- DC = symmetric decryption

H = hash function

Ζ

- = concatenation
- = compression using ZIP algorithm

R64 = conversion to radix 64 ASCII format

| Function              | Algorithms Used                                                       | Description                                                                                                                                                                                                                                       |
|-----------------------|-----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Digital<br>signature  | DSS/SHA or RSA/SHA                                                    | A hash code of a message is created using<br>SHA-1. This message digest is encrypted using<br>DSS or RSA with the sender's private key and<br>included with the message.                                                                          |
| Message<br>encryption | CAST or IDEA or Three-key<br>Triple DES with Diffie-Hellman<br>or RSA | A message is encrypted using CAST-128 or<br>IDEA or 3DES with a one-time session key<br>generated by the sender. The session key is<br>encrypted using Diffie-Hellman or RSA with<br>the recipient's public key and included with<br>the message. |
| Compression           | ZIP                                                                   | A message may be compressed for storage or transmission using ZIP.                                                                                                                                                                                |
| E-mail compatibility  | Radix-64 conversion                                                   | To provide transparency for e-mail applica-<br>tions, an encrypted message may be converted<br>to an ASCII string using radix-64 conversion.                                                                                                      |

# **AUTHENTICATION**

- **1.** The sender creates a message.
- 2. SHA-1 is used to generate a 160-bit hash code of the message.
- **3.** The hash code is encrypted with RSA using the sender's private key, and the result is prepended to the message.
- 4. The receiver uses RSA with the sender's public key to decrypt and recover the hash code.
- **5.** The receiver generates a new hash code for the message and compares it with the decrypted hash code. If the two match, the message is accepted as authentic.

# CONFIDENTIALITY

- **1.** The sender generates a message and a random 128-bit number to be used as a session key for this message only.
- The message is encrypted using CAST-128 (or IDEA or 3DES) with the session key.
- **3.** The session key is encrypted with RSA using the recipient's public key and is prepended to the message.
- **4.** The receiver uses RSA with its private key to decrypt and recover the session key.
- 5. The session key is used to decrypt the message.



(c) Confidentiality and authentication

#### **COMPRESSION**

PGP compresses the message after applying the signature but before encryption. This has the benefit of saving space both for e-mail transmission and for file storage.

#### E-MAIL COMPATIBILITY

- Electronic mail systems only permit the use of blocks consisting of ASCII text. To accommodate this restriction, PGP provides the service of converting the raw 8-bit binary stream to a stream of printable ASCII characters.
- The scheme used for this purpose is radix-64 conversion. Each group of three octets of binary data is mapped into four ASCII characters.

### Cryptographic Keys and Key Rings

- PGP makes use of four types of keys: one-time session symmetric keys, public keys, private keys, and passphrase-based symmetric keys.
- Public-Key management and Securing Private-Key









- Generate Public-Private Keys
- How To store Private Key in secure manner and assign an ID
- Public Key Certificate
- Registration (Signed Certificate)
- Administrator (Local, or not)



[1] William Stallings, "CRYPTOGRAPHY AND NETWORK SECURITY PRINCIPLES AND PRACTICE", Fifth ed. Prentice Hall, 2011